To know about the bar bending schedule we have to start from the beginning. Choosing a suitable material for construction is essential, and steel is often the material of choice. This is because steel is strong, durable, and cost-effective.

Steel is suitable for construction due to its ability to bend, resistance to corrosion and oxidation, and high tensile strength.

At the end of this blog, you’ll get an overview of the bar bending schedule.

The TMT steel bar is essential for building fire and earthquake-resistant buildings.

The bar bending schedule outlines the TMT bar shape and size in construction.


Bar bending schedule: lists length, angle, material info for construction bars for accuracy and safety.. At the end of this blog, you’ll get an overview of the bar bending schedule.

What is Bar Bending Schedule?

A Bar Bending Schedule (BBS) is a tabular document that outlines the details of the reinforcement bars used in a reinforced cement concrete (RCC) structure. 

It includes information such as the size and type of bars, the shape of the bends (with sketches), the number of bars in each set, the length of each bar, the total length in running meters, the weight per unit length, and the total weight of the bars.

The lengths and sizes of bars are determined using the Bar Bending Schedule during construction. This schedule assists in ensuring that the right materials are readily available.

Importance of Bar Bending Schedule

BBS: essential process for classifying total steel bars in civil engineering construction. This tabular representation shows the length, thickness, diameter, and other properties of the reinforcement bars used. Bar bending schedule contributes to low-cost house construction.

  • The construction of Reinforced Cement Concrete (RCC) requires the use of a Bar Bending Schedule (BBS) to ensure its importance.

  • BBS helps calculate cutting length of bars and reconcile materials in reinforcement processing.

  • BBS helps reduce wastage and saves time & money by enabling efficient work on concrete units during construction.

  •  Bar Bending Schedule (BBS) also helps in easy verification, inspection, and cross-checking of the work. 

  • It is also helpful for easy estimation and evaluation of costs incurred at the time of manufacturing. 

  • The warehouse reduces transportation costs by cutting and bending the steel

How does Bar Bending Schedule Work? 

The bar bending schedule plays a pivotal role in construction. The working of the bar bending schedule is simple. The schedule dictates the usage of RCC bars.

BBS: reduces waste in cutting, improves quality control, assists in stock management, speeds up auditing, prepares bills, and estimates steel quantity.

Things to Keep in Mind before Bar Bending Schedule Calculation

  • Group the bars together for each structural unit and each floor.

  • List the bars numerically and include the length, size, shape, and type specifications in accordance with BS 8666.

  •  Each bar must have a unique label attached to the bundle of bars. 

  • Calculate the cutting length and bending length separately.

  • Length of hook: 9D. Total length of straight bar w/ hooks at both ends: L + 18D.

  •  45° cranked bar: additional length for 1 bent-up = 0.45D; 2 bent-ups = 0.9D.

  •  30° cranked bar: 2D inclined, 1.73D horizontal, 0.3D extra per crank.

  • The bending length for stirrups is 1D for 45°, 2D for 90°, and 3D for 135°.

  •  The overlap or lap length at the joint is equal to the regular length of the bar (usually 12m). 

  • The length of the bent-up bar for 30°, 45°, and 60° are 0.3D, 0.45D, and 0.6D respectively. 

  • Percentage of reinforcement for: lintel/slab = 0.7-1%, beams = 1-2%, columns = 1-5%, foundation raft/footing = 0.5-8%.

Bar Bending Schedule for Slab

A two-way slab, on the other hand, consists of main bars in both directions, as well as distribution bars Place distribution bars in both directions, and add extra bars to the bottom of cranked bars (L/4) to maintain slab structure.

Consider both one-way and two-way slabs when calculating steel reinforcement for a slab. Determine the amount of steel used in the slab by considering the size, weight, and type of the slab. Knowing the proper amount of steel reinforcement to use is essential for the successful construction of a reliable, safe slab. Perform the bar bending schedule in this manner.

Slabs are an integral part of the construction, used to divide a large area into smaller sections. Use a slab thickness that generally varies between 4” and 8”, but most commonly used 6” (0.15m) for standard needs. When additional strength is necessary, use 8” or larger slabs.

There are two primary types of slabs: one-way and two-way, each with its own unique characteristics.

Construct a one-way slab by placing cranked main bars at a 45-degree angle and with a length of 0.42 x the depth of the slab minus the top and bottom cover. Additionally, position straight distribution bars in the longer direction.

Bar Bending Schedule for Beam

Bar Bending Schedule calculation for a beam is essential in constructing a concrete structure. Importantly, be aware of the beam design and the forces it will encounter, and use appropriate equations to determine the size, number, and length of the steel reinforcement bars required.

Provide a comprehensive overview of the entire beam-building process in the bar bending schedule for the beam, ensuring all necessary information is included. Critically consider the area of steel reinforcement, the number and size of bars, and their respective lengths to guarantee the correct amount and type of steel reinforcement is used. Proper calculation of these variables is essential for creating a safe and reliable beam.


In conclusion, a bar bending schedule is an essential tool for the construction industry, allowing for efficient and accurate planning, execution, and monitoring of reinforcing steel works.

Create a clear and detailed list of all required steel bars, including their lengths, shapes, and quantities, using the bar bending schedule to help ensure timely ordering and delivery of all necessary materials.

Additionally, it allows for identifying any potential errors or discrepancies in the design and construction process, allowing for prompt corrections and adjustments.

Overall, the use of a bar bending schedule is crucial for maintaining a high level of quality and safety in any construction project that involves reinforcing steelworks